USN	N	CBCS SCHEME CENTRAL LIBRARY 15M	MATDIP41
Fourth Semester B.E. Degree Examination, July/August 2022			
Additional Mathematics – II Time: 3 hrs. Max. Marks: 80			
Note: Answer any FIVE full questions, choosing ONE full question from each module.			
cince.		<u>Module-1</u> [4 0 2	1]
nd /or equations written eg. $42+8 = 30$, will be treated as maipractice 5	a.	Find the rank of the matrix by elementary row transformations: $A = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 3 & 4 \\ 2 & 3 & 1 \end{bmatrix}$	4 7 4
ureated	b.	Solve the following system of equations by Gauss elimination method	+]
WIII De		$\begin{array}{c} x + y + z = 9 \\ x - 2y + 3z = 8 \end{array}$	
00	C.	2x + y - z = 3 Find all the eigen values and the corresponding eigen vectors for the matrix.	(05 Marks)
47+9		$\begin{bmatrix} 7 & -2 & 0 \\ 2 & -2 & 0 \end{bmatrix}$	
litten eg		$A = \begin{vmatrix} -2 & 6 & -2 \\ 0 & -2 & 5 \end{vmatrix}.$	(06 Marks)
suon 2	a.	Reduce the matrix to echelon form and find the rank of the matrix.	
	a.	$\begin{bmatrix} 0 & 2 & 3 & 4 \end{bmatrix}$	
and /01		$A = \begin{bmatrix} 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}.$	(05 Marks)
aluator	b.	Solve the following system of equations by Gauss elimination method:	
7 10 CM		$ \begin{array}{c} x_1 - 2x_2 + 3x_3 = 2 \\ 3x_1 - x_2 + 4x_3 = 4 \end{array} $	
, appea		$2x_1 + x_2 - 2x_3 = 5$ Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ Find A ⁻¹ .	(05 Marks)
Ication	C.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ Find A^{-1} .	(06 Marks)
Idenui		d ² v	
lo guin		Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$.	(06 Marks)
2. Any revealing of identification, appeal to evaluator	b.	Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$ given that $y = 0$, $\frac{dy}{dx} = -1$ at $x = 1$.	(05 Marks)
2. AN	c.	Solve by the method of undetermined coefficient $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4e^{3x}$.	(05 Marks)
OR			
4		Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^x$.	(05 Marks)
	b.	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0$ subject to, $\frac{dy}{dx} = 2$, $y = 1$ at $x = 0$.	(05 Marks)
	C.	Solve by the method of variation of parameters $y'' + a^2y = secax$. 1 of 2	(06 Marks)

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

15MATDIP41

Module-3
Module-3
b. Given
$$f(t) = \begin{cases} E & 0 < t < a/2 \\ -E & a/2 < t < a \end{cases}$$
 where $f(t + a) = f(a)$. Show that $L[f(t)] = \frac{E}{S} \tanh\left(\frac{aS}{4}\right)$.
(06 Marks)
c. Find $L\{(3t^2 + 4t + 5)u(t - 3)\}$.
OR
6 a. Find $L\left\{\frac{1 - c^a}{t}\right\}$.
(05 Marks)
b. Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$.
(05 Marks)
c. Express the following function in terms of the unit step function and hence find their Laplace transform:
 $f(t) = \begin{cases} \sin t - 0 < t \le \pi/2 \\ \cos t - t > \pi/2 \end{cases}$ (06 Marks)
c. Express the following function in terms of the unit step function and hence find their Laplace transform:
 $f(t) = \left\{ \frac{\sin t - 0 < t \le \pi/2 \\ \cos t - t > \pi/2 \end{cases}$ (06 Marks)
b. Find $L^{-1}\left\{ \log\left(1 + \frac{a^2}{s^2}\right) \right\}$.
(05 Marks)
c. Solve the differential equation $s^{y} - 3s^{y} + 2y = 0$, $y(0) = 0$, $y'(0) = 1$ by Laplace transform techniques.
8 a. Find $L^{-1}\left\{ \frac{s + 5}{c^3 - 6s + 13} \right\}$ (05 Marks)
b. Find $L^{-1}\left\{ \frac{s + 5}{(s^2 - 6s + 13)} \right\}$ (05 Marks)
c. Solve the differential equation $s^{y} - 3y' + 2y = 0$, $y(0) = 0$, $y'(0) = 1$ by Laplace transform techniques.
9 a. The probability that 3 students A. B. C solve a problem are $1/2$, $1/3$, $1/4$ respectively. If the problem is simultaneously assigned to all of them, what is the probability that the team.
(06 Marks)
c. State and prove Baye's theorem.
10 a. Prove that
 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$.
(06 Marks)
10 a. Prove that
 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$.
(06 Marks)
10 a. Prove that
 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$.
(06 Marks)
10 a. Prove that
 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$.
(06 Marks)
10 a. Prove that
 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$.
(06 Marks)
11 a bott factory there are four machines A, B, C. D manufacturing respectively 20%, 15\%, 25\%, 40\% of the total production. Out of the

(05 Marks)

* * * * * 2 of 2

St St